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Abstract

We propose a high order alternating direction implicit (ADI) solution method for solving unsteady convection–

diffusion problems. The method is fourth order in space and second order in time. It permits multiple use of the one-

dimensional tridiagonal algorithm with a considerable saving in computing time, and produces a very efficient solver. It

is shown through a discrete Fourier analysis that the method is unconditionally stable for 2D problems. Numerical

experiments are conducted to test its high accuracy and to compare it with the standard second-order Peaceman–

Rachford ADI method and the spatial third-order compact scheme of Noye and Tan.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the unsteady two-dimensional (2D) convection–diffusion equation for a transport variable u
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¼ 0; in X� ð0; T �; ð1aÞ
uðx; y; tÞ ¼ gðx; y; tÞ; ðx; yÞ 2 oX; t 2 ð0; T �; ð1bÞ
uðx; y; 0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 X; ð1cÞ
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where X � R2 is a rectangular domain, ð0; T � is the time interval, and g and u0 are given functions of

sufficiently smoothness. In (1a), cx and cy are constant speeds of convection and ax > 0 and ay > 0 are

constant diffusivities in the x- and y-direction, respectively. This equation may be seen in computational
hydraulics and fluid dynamics to model convection–diffusion of quantities such as mass, heat, energy,

vorticity, etc [10].

Various numerical finite difference schemes have been proposed to solve convection–diffusion problems

approximately. Most of these schemes are either first-order or second-order accurate in space, and have

poor quality for convection dominated flows if the mesh is not sufficiently refined. Higher order discreti-

zations are generally associated with large (non-compact) stencils which increase the band-width of the

resulting matrix and lead to a large number of arithmetic operations, especially for higher dimensional

problems.
To obtain satisfactory higher order numerical results with reasonable computational cost, there have

been attempts to develop higher order compact (HOC) schemes, which utilize only the grid nodes directly

adjacent to the central node. After deriving several higher order implicit schemes for unsteady one-

dimensional convection–diffusion equations [5], Noye and Tan [6] proposed a nine-point HOC implicit

scheme for unsteady 2D convection–diffusion equations with constant coefficients. The scheme is third-

order accurate in space and second-order accurate in time, and has a large zone of stability. Two other

classes of compact difference schemes of order 2 in time and order 4 in space have been derived in [8,9], with

different choices of weighting parameters.
The 2D HOC scheme proposed in [2] for solving steady state equations, and analyzed for instance in

[4,12,13], was extended by Spotz and Carey [11] to solve unsteady 1D convection–diffusion equations with

variable coefficients and 2D diffusion equations. Recently, based on the work of [11], a class of HOC

schemes with weighted time discretization have been derived for solving unsteady 2D convection–diffusion

equations [3]. The numerical experiments presented in [3] show that these schemes are accurate and capture

very well the transient solutions of convection–diffusion problems.

In this paper, we propose a high order alternating direction implicit solution method for solving un-

steady 2D convection–diffusion problems. We make the alternating direction implicit (ADI) splitting
possible, by choosing a spatial discretization different from the one derived in [2], and used in [3,11] for

unsteady problems. The new ADI method is second order in time and fourth order in space and does not

need much more work than the well-known Peaceman–Rachford (P–R) ADI method [7].
2. Derivation of compact ADI scheme

We start by examining the one-dimensional steady convection diffusion equation

�ax
d2u
dx2

þ cx
du
dx

¼ f ; ð2Þ

where cx and ax > 0 are constants and f is a function of x. Using the techniques outlined in [12,14,15], it is

easy to derive a three-point fourth-order compact scheme for Eq. (2) as
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where d2x and dx are the first- and second-order central difference operators, Dx is the mesh size.

For convenience, we define two finite difference operators

Lx ¼ 1þ Dx2

12
d2x

�
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12ax
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Eq. (3) can then be formulated symbolically as

L�1
x Axui ¼ fi þOðDx4Þ:

This symbolic construction can be used to derive high order compact schemes for higher dimensional

problems [14]. When applied to the 2D convection diffusion equation
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¼ f ; ð4Þ

with cx, cy , ax > 0 and ay > 0 being constant and f a smooth function of x and y, it yields the following

fourth-order approximation

L�1
x Ax

�
þ L�1

y Ay

�
uij ¼ fij þOðD4Þ; ð5Þ

where OðD4Þ denotes the OðDx4Þ þOðDy4Þ term. Here, the meaning of the notations Ly and Ay is obvious.

We assume that the equation is approximated on a uniform grid with mesh sizes Dx and Dy in the x- and y-
direction, respectively. Applying to both sides of Eq. (5) with the operator LxLy , we obtain

ðLyAx þ LxAyÞuij ¼ LxLyfij þOðD4Þ: ð6Þ

This approximation is clearly fourth-order accurate, and has a compact nine-point stencil since it involves

only discrete difference operators of the form dpxd
q
y , where p and q are non-negative integers less than or

equal to 2. Notice that in deriving (6) we used the fact that the two operators Lx and Ly commute with each

other, which is possible since the convection and diffusion terms are assumed constant.
A fourth-order semi-discrete approximation to the unsteady convection–diffusion equation in (1) can be

obtained by replacing f with �ou=ot in (6)

LxLy
oun

ot
¼ �ðLyAx þ LxAyÞun þOðD4Þ;

where un is the approximate solution at time tn ¼ nDt, nP 0 and Dt is the time increment. Employing

Crank-Nicolson time discretization, we have

LxLy
unþ1 � un

Dt
¼ � 1

2
ðLyAx þ LxAyÞðunþ1 þ unÞ þOðD4Þ þOðDt2Þ: ð7Þ

This discretization is obviously of order 2 in time and order 4 in space, due to the use of the Crank-Nicolson

type integrator in time with a fourth-order spatial discretization. After rearrangement and multiplying (7)

by Dt, we have

LxLy

�
þ Dt

2
ðLyAx þ LxAyÞ

�
unþ1 ¼ LxLy

�
� Dt

2
ðLyAx þ LxAyÞ

�
un þOðDtD4Þ þOðDt3Þ: ð8Þ

To get a solution for our problem, we must solve at each time step a sparse linear system arising from the

implicit discretization (8). Direct methods based on Gaussian elimination may be too expensive to use for

solving such sparse linear system of large size. Iterative methods, such as Krylov subspace methods, are

generally efficient, however, they may be expensive to use at each time step, and especially for higher di-

mensional problems.

A way around in developing an efficient solution method to our problem is to solve a perturbed problem

which has the same order of accuracy as (8) and which allows to reduce the 2D problem to a succession of
many one-dimensional problems. To accomplish this, we add the terms Dt2AyAxunþ1=4 and Dt2AxAyun=4 to

the left- and right-hand sides of (8), respectively, so that Eq. (8) becomes after dropping the error terms
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which can be factored as
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The extra term added to Eq. (8) is given by
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If Dt6 minðDx;DyÞ, we added to Eq. (8) a term which is of similar order to its truncation error. It then

follows that the resulting approximation (9) is second order in time and fourth order in space. Introducing

an intermediate variable u� and applying the D�Yakonov ADI-like scheme [1], Eq. (9) leads to
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We note that the intermediate values of u� at the boundary are obtained using Eq. (10b).

To study the stability of the new scheme, we use the von Neumann linear stability analysis. If we let

unij ¼ bn eIhxi eIhy j to be the value of un at node ði; jÞ, where I ¼
ffiffiffiffiffiffiffi
�1

p
, bn is the amplitude at time level n, and

hxð¼ 2pDx=K1Þ and hyð¼ 2pDy=K2Þ are phase angles with wavelengths K1 and K2, respectively, the am-

plification factor nðhx; hyÞ ¼ bnþ1=bn, for stability, has to satisfy the relation jnðhx; hyÞj6 1, for all hx and hy
in ½�p; p�. By substituting the expressions of unij and unþ1

ij in (9), the amplification factor is found to be

nðhx; hyÞ ¼ gxðhxÞgyðhyÞ;

where gxðhxÞ is given by

gxðhxÞ ¼
ðc1 � c2Þ þ Iðc3 þ c4Þ
ðc1 þ c2Þ þ Iðc3 � c4Þ

with

c1 ¼ 1� 1
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2
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2
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12
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being all non-negative. The other term gyðhyÞ is defined in a similar way by replacing x by y in the above

expressions. It is easy to verify that jgxðhxÞj6 1 for all hx 2 ½�p; p� if and only if c1c2 P c3c4. A simple

calculation shows that
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;

and
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c3c4 ¼ c2x
Dt
6

1

�
� sin2 hx

2

�
sin2 hx

2
:

Hence, c3c4 6 c1c2 and it follows that jgxðhxÞj6 1 for all hx 2 ½�p; p�. Since we have a similar inequality for

gyðhyÞ, we conclude that the new method is unconditionally stable.
3. Numerical experiments

We first examine a diffusion problem in the unit square domain ½0; 1� � ½0; 1�, with diffusion coefficients

ax ¼ ay ¼ 1 (and cx ¼ cy ¼ 0). The exact solution of this test problem is given by

uðx; y; tÞ ¼ e�2p2t sinðpxÞ sinðpyÞ:

The initial and Dirichlet boundary conditions are directly taken from this solution. We consider uniform

grids with different mesh sizes and compare the accuracy of the computed solutions from the present ADI

scheme and the P–R ADI scheme. The quantity that we compare is the L2-norm error of the computed

solution with respect to the exact solution. We choose a time step Dt ¼ 0:001 and t ¼ 1 for the entire

simulation process.

In Fig. 1, we plot the L2-norm errors at each time step in each case. The figure shows the superiority of

the present ADI scheme over the Peaceman–Rachford ADI scheme. The error obtained on a 10� 10 grid is

much smaller than the one obtained using the Peaceman–Rachford ADI scheme on a 40� 40 grid.
To further study the validity and effectiveness of the new high order ADI method, we apply (10) to a

special problem defined in the square region ½0; 2� � ½0; 2�, with an analytical solution given, as in [6], by
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Fig. 1. Comparison of the L2-norm errors produced by the present scheme and the P–R scheme at each time step.



Table 1

L2-norm errors at t ¼ 1:25 s and CPU times delivered by four different schemes, with Dt ¼ 0:00625 and Dx ¼ Dy ¼ 0:025

Method L2-norm error CPU time (s)

Noye and Tan 1.24� 10�4 26.4

P–R ADI 2.02� 10�3 3.4

Kalita et al. 1.02� 10�4 19.7

Present ADI 5.62� 10�5 3.5
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Fig. 2. Comparison of the L2-norm errors produced by four different schemes at each time step.
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uðx; y; tÞ ¼ 1

4t þ 1
exp

"
� ðx� cxt � 0:5Þ2

axð4t þ 1Þ � ðy � cyt � 0:5Þ2

ayð4t þ 1Þ

#
:

The Dirichlet boundary and the initial conditions are directly taken from this solution.

The L2-norm of the errors produced by the present scheme, the P–R ADI scheme [7], the spatial third-

order nine-point compact scheme of Noye and Tan [6], and the fourth-order nine-point compact scheme of

Kalita et al. [3], 2 are presented in Table 1, with the total elapsed time (CPU) in seconds delivered in each

case. The results show that the present ADI scheme provides the most accurate solution. In Fig. 2, we plot

the L2-norm errors at each time step for the entire simulation process in each case. The figure shows that the
four errors have the same behavior with the error of the present scheme remaining smaller than the other

errors at every time step. Contour plots of the exact and numerically approximated pulses in the sub-region

16 x, y6 2 are drawn in Fig. 3 for each test carried out (except the Kalita et al. [3] scheme, for which the
2 The computed data in [3] are incorrect, which has been confirmed with the lead author of [3].
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Fig. 3. Contour plots of the pulse in the sub-region 16 x, y6 2 at t ¼ 1:25 s: (a) exact, (b) Noye and Tan scheme, (c) present ADI

scheme, and (d) P–R ADI scheme, with Dt ¼ 0:00625.
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contour plot can be found). Figs. 3(b) and (c) show that the present scheme as well as the Noye and Tan

scheme capture very well the moving pulse, yielding pulses centered at ð1:5; 1:5Þ and almost indistin-

guishable from the exact one displayed in Fig. 3(a). The Peaceman–Rachford ADI scheme produces,

however, a pulse distorted in the x- and y-directions, owing to the fact the second-order error terms of the

method is related to the wave numbers in both directions, as is explained in [6].
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Table 1 shows that the two ADI schemes deliver very small CPU times. Almost eight times smaller than

the one delivered by the Noye and Tan scheme. Hence, the new scheme is the most effective in term of

accuracy and time consumption. We notice that, the ADI methods are carried out by repeatedly solving a
series of triangular linear systems, while to solve the linear system arising from the Noye and Tan dis-

cretization (and the discretization of Kalita et al.), we used a preconditioned iterative solver (GMRES with

ILU(0)). The iterations are terminated when the 2-norm of the relative residual is reduced by a factor of

107. All computer programs are written in standard Fortran 77 and were run on a SunBlade 100 machine.
4. Concluding remarks

We proposed a high order accurate alternating direction implicit solution method for solving unsteady

convection–diffusion problems. The method is fourth order in space and second order in time and allows a

considerable saving in computing time. It is shown through a discrete Fourier analysis that it is uncon-

ditionally stable for 2D problems. The method is easily extendible to multi-dimensional problems. Nu-

merical experiments are conducted to test its high accuracy and to show its superiority over the classical

Peaceman–Rachford ADI scheme and the spatial third-order compact scheme of Noye and Tan, in terms of

accuracy and computational cost.
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